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FOREWORD

Target identification using gray-scale texture information is of interest both to the
surveillance and interceptor design communities. This report details an analog scheme to extract
texture features to use for target discrimination. The features extracted from this system could be
used either as part of an alert system for a human surveillance team or as part of a terminal homing
seeker in an autonomous kill vehicle.
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ABSTRACT

This report describes an analog method to extract gray-scale texture features. This method
uses a nonlinear resistive grid to perform a two-dimensional pseudowavelet transform of the initial
input image. Texture features are computed using first- and second- order variance estimates of the
transform coefficients. Some preliminary results are presented indicating the natural segmentation
that the nonlinearity provides at the boundary of two dissimilar textures.

iiHv



NSWCDD/TR-92/237

CONTENTS

INTRODUCTION ....................................................................................... 1

B A C K G R O U N D ......................................................................................... 1

R E SU L T S ................................................................................................. 3

CO N CLU SIO N .......................................................................................... 4

REFERENCES ........................................................................................... 5

ILLUSTRATIONS

Figure E

I SCALING FUNCTION FOR ONE-DIMENSIONAL RESISTIVE GRID
WITH LINEAR COMPONENTS ............................................................. 6

2 MOTHER WAVELET W(x) FOR ONE-DIMENSIONAL RESISTIVE GRID
WITH LINEAR COMPONENTS ............................................................. 6

3 ONE-DIMENSIONAL RESISTIVE GRID WAVELETS AT THREE
INCREASING SCALES ....................................................................... 7

4A NONLINEAR ONE-DIMENSIONAL RESISTIVE GRID INPUT ...................... 7
4B EFFECTIVE RESULTANT LINEAR AND NONLINEAR WAVELET FOR

SPIKE COMPONENT OF TOTAL INPUT SHOWN IN FIGURE 4A ................. 8
5A ESTIMATE OF DENSITY USING HISTOGRAM ....................................... 8
5B LINEAR RGKE ESTIMATE WITH L=5.0 ................................................. 8
5C LINEAR RGKE ESTIMATE WITH L=2.0 ................................................. 8
5D LINEAR RGKE ESTIMATE WITH L= 1.0 ................................................. 8
6A ESTIMATE OF DENSITY USING HISTOGRAM ........................................ 9
6B LINEAR RGKE ESTIMATE WITH p3=0.2 .................................................. 9
6C LINEAR RGKE ESTIMATE WITH pi=1.0 .................................................. 9
61) LINEAR RGKE ESTIMATE WITH 0=2.0 .................................................. 9
7A TANK IMAGE INPUT TO NONLINEAR TWO-DIMENSIONAL

RESISTIVE G RID .............................................................................. 10
7B RESULTANT CONDUCTANCE MAP FOR TANK IMAGE FOR

MODERATE NONLINEARITY SETTING .............................. 11

v



NSWCDD/TR-92/237

FIGURES (CONTINUED)

8A AERIAL IMAGE INPUT TO NONLINEAR TWO-DIMENSIONAL
RESISTIVE GRID .............................................................................. 12

8B RESULTANT CONDUCTANCE MAP FOR AERIAL IMAGE FOR
MODERATE NONLINEARITY SETING ................................................ 13

9 TOP TO BOTY'OM: ONE-DIMENSIONAL INPUT (TOP LINE) PRODUCED
BY TAKING VERTICAL (TURRET TO TREAD) SLICE OF TANK IMAGE
OF FIGURE 7A; RESISTIVE GRID OUTPUTS AT SUCCESSIVELY
DOUBLED SCALES ........................................................................... 14

10 TOP TO BOTTOM: ONE-DIMENSIONAL INPUT (TOP LINE) PRODUCED
BY TAKING VERTICAL (TURRET TO TREAD) SLICE OF TANK IMAGE
OF FIGURE 7A; SUCCESSIVE WAVELET COEFFICIENTS ......................... 15

11 TOP TO BOTTOM: ANALOG REGRESSION COEFFICIENTS FOR
INCREASING SCALE ........................................................................ 16

12 TOP TO BOTTOM: SECOND-ORDER ANALOG REGRESSION
COEFFICIENTS FOR INCREASING SCALE ............................................ 17

13 THREE-CLASS SCATTER PLOT OF DERIVED RESISTIVE GRID
WAVELET TRANSFORMATION (RGWT) DATA ....................................... 18

14 BUILDINGS VS. ROAD IN RGWT FEATURE SPACE ................................ 19
15 FIELDS VS. OTHER IN RGWT FEATURE SPACE .................................... 20
16 16-PATCH TEXTURE QUILT .............................................................. 21
17 SEPARATION OF 16 QUILT PATCHES IN DERIVED FEATURE SPACE ......... 22

vi



NSWCDD/TR-92/237

INTRODUCTION

The silicon retina of MeadI displays many features of human retinal processing. The key
feature of interest here is the center-surround response of each node in the retina that is reminiscent
of a mother wavelet.2 This center-surround response is accomplished by differencing the input at a
pixel with a local average computed via an analog resistive grid. In this report, we focus on the
utility of these analog pseudowavelet coefficients. We include an example where the
multiresolution wavelet coefficients have been further processed to produce local variance and
variance of variance features that can be used to perform texture discrimination. The full details of
the hybrid optoelectronic implementation of this system are addressed elsewhere. 3 The twin
advantages of this hybrid approach are the near real-time processing to obtain wavelet coefficients
and/or texture features and the nonlinear, data-driven nature of the effective wavelets produced by a
resistive grid composed of nonlinear components.

BACKGROUND

As an outgrowth of previous work in texture discrimination based on fractal dimension
derived power law features,4 ' 5 we have recently started to consider using a (hypothetical) silicon
retina to do image preprocessing for texture analysis. There are twin motivations for this line of
investigation. First and foremost, the texture discrimination ability of retinal-based biological
systems provides a working prototype for this approach.

Second, an analog implementation of our hypothetical retina offers the potential of real-time
preprocessing. The postprocessing is based on well understood parametric and nonparametric
statistical techniques. 6 This permits an analysis of the contributions of individual features
produced in the preprocessing and gives us a capability to follow an evolutionary or experimental
approach with our silicon retina model. We can delete features that do not perform, while trying
variations on new or good features. Central to our model is the set of nonlinearities encountered in
analog very large scale integrated (VLSI) implementations as well as in biological systems. These
nonlinearities are crucial, for example, to both segmentation and the prevention of feature
contamination between disparate texture types.

Our (hypothetical) silicon retina is centered on the use of two-dimensional resistive grids.
A resistive grid functions to smooth the input in a linear or (of interest to us) a nonlinear fashion.
In its linear version, the resistive grid smoothes the inputs to produce an output that corresponds
approximately to the convolution of the input image with an exponential kernel with a characteristic
length or kernel size we will denote by Lk or, equivalently, by an associated scale ek.
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Let f:R 2 -> RI be the function that produces our two-dimensional input image defined on a
discrete (pixel) array. Further, let Rk(f:V 2 X It _> •L 2 X IL be the resistive grid transform of f at
scale E. Suppose that we compute Re(f) for n different scales: R20 (f), R21(f), R22(f),..., R2n-(f).
Notationally, we let Lp = R2 3-1(f). The Lp can be thought of as functional estimates at different
levels of smoothing. Next, we compute a set of features for each pixel:

Fa = R2a-l(f) - R2a(P = La - LE+l , a=l,..., n-1.

We now have a set of n-I features defined at each array or grid (pixel) point that
correspond to a difference of kernels of different characteristic scales. These are the (nonlinear)
resistive grid analogs of the difference-of-Gaussian wavelet basis. Thus, at each pixel, we have
the first n- I coefficients of a wavelet (or pseudowavelet) basis with the Fix being the coefficient
arrays.

Ganglion cells in the retina of the cat are of two types, those that respond to hyperpolariz-
ing signals, and those that respond to depolarizing signals. 7 Each type performs a half-wave
rectification operation on the signal it receives. Carver Mead has demonstrated the feasibility of
performing half- and full-wave rectification in analog VLSI. Therefore, it makes sense to produce
features based on this physiological structure and analog VLSI capability.

An obvious feature to compute using the twin elements of resistive grids and full-wave
rectifiers is a mean variance of the pseudowavelet coefficients as a function of scale. The goal is to
compute features that are relatively texture invariant. We compute these variance features va as
follows:

va = R2 a+,t (IFa - R2at(F,)I)

Here, rt r ( 1,2,... ) is chosen to smooth these variance estimates--essentially, this last smixcb ig i.
analogous to basebanding on some carrier frequency.

This gives a set of additional features for each array location (pixel) that give a measure of
the variance of the difference of kernel features for the different scales. This set of steps can be
repeated (iterated) using vk as input (instead of Fk) to produce a set of second order variances vkk.
Thus, we have a truncated double expansion in pseudowavelet coefficients and orders of variance
of these coefficients for each array location or pixel.

2



NSWCDD/TR-92/237

RESULTS

In this section, a discussion of the linear version of our functional estimation technique is
given along with some nonlinear simulation results. A full analytical treatment of the nonlinear
theory is beyond the scope of this report. For analytical purposes, consider a linear approximation
to our functional estimation technique. Call the exponential function O(x) (see Figure 1* ), obtained
from the resistive grid, which is our scaling function. We then have, as our mother wavelet iV(x),
the difference of exponentials depicted in Figure 2. Figure 3 gives v(x) at three different scale
values. The effect of the nonlinearity of the (simulated) analog VLSI implementation on this
wavelet is depicted in Figures 4a and 4b. Figure 4a shows the discontinuous input, while
Figure 4b compares the %V(x) function corresponding to the linear case and the nonlinear theory.
The effect of this adaptive wavelet amounts to a segmentation effect in the case where there is a
sharp discontinuity (an edge) in the input such as in Figure 4a. That these nonlinear effects allow
for an automatic segmentation can be seen from the ability of the resistive grid kernel estimator
(RFKE) to model discontinuities in probability density functions while maintaining an otherwise
smooth estimate (see Figures 5 and 6, reproduced from Reference 8). The resistive elements in t&h
nonlinear resistive grid have variable conductance values. By producing a conductance map of the
resistive grid, a natural segmentation occurs as can be seen in Figures 7b and 8b corresponding to
the input images Figures 7a and 8a, respectively. The dark areas in Figures 7b and 8b correspond
to drastically reduced conductance values. These reduced conductance values serve to greatly limit
the contribution of one texture type to the wavelet coefficients centered in an adjacent texture type,
which is exactly the effect seen in Figure 4b.

For the one-dimensional example input of Figure 9 (a vertical slice down the center, i.e.,
bushes to turret to tread to grass, of the image depicted in Figure 7a), this produces the functional
approximations Lj(x) (Figure 9), and differencing Lj and Lj. 1 will yield terms Fj(x) analogous to
the wavelet coefficients (Figure 10). Considering the deviations of Fj(x) from a smoothed
regression vj(x) of Fj(x) (Figure 11), and the deviations of vj(x) from a smoothed regression
vkk(x) of vj(x) (Figure 12), as features indicative of texture, preliminary discriminant analysis
indicates encouraging capabilities to distinguish the different classes of texture.

Figure 13 depicts the high degree of separation between the three classes (grass, bush, and
tank) found in Figure 7a in a derived feature space based on these resistive grid wavelet
transformation features. Figures 14 and 15 similarly indicate very good discriminant capability for
five classes (grass, trees, field, road, and building) found in Figure 8a. Nonparametric
discriminant analysis results already show a marked improvement over results that have been
obtained using traditional power law features, and the nonlinear segmentation effects appear to be
central to these results. Feature analysis has shown that the first- and second-order variance
features are of equal relative importance in the texture discrimination.

To illustrate the full power of our approach, one more example will be discussed.
Figure 16 is a 255 gray-level texture quilt consisting of 16 different textures. A similar image has
appeared previously in the literature in conjunction with the unsupervised texture discrimination

All figures are included after the References.

3
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work of Jain and Farrokhnia. 9 Each patch is 128 x 128 pixels for a total size of 512 x 512. Figure
17 shows the degree of separation obtained for the 16 classes in a derived feature space. Each
class is represented by 250 points randomly chosen in a 100 x 100 square positioned so its center
is coincident with the center of the patch. As can be seen from Figure 17, a high degree of
separability exists for most of the classes. It should also be emphasized that those classes
overlapping in this projection can be separated in some of the other three-dimensional derived
feature spaces.

CONCLUSION

Our approach seems to be a powerful tool in identifying features useful in texture
representation for (one type of) machine vision. In doing a comparison with biological retinas, we
are several steps behind the ganglia layer. Thus, we are in some sense trying to find our way from
the retinal preprocessing backwards toward the higher processing levels. In finding what works in
the andlog icalm, it is hoped we will shed some light on the biological realm as well.

An electronic design for near real-time processing has been presented to obtain wavelet
coefficients and/or texture fcatures. Also, simulation results show that the nonlinear, data-driven
character of the wavelets obtained from nonlinear resistive grids can be an advantage rather than a
disadvantage, especially where a high contrast boundary separates different textures. The
conversion of the wavelet coefficient maps to local power or variance features has been
demonstrated to yield a useful set of features for texture discrimination.

Future work will address the need for comparison with more conventional wavelet
techniques, including an analysis of the nonlinear character of the wavelet response.

4
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FIGURE 4A. NONLINEAR ONE-DIMENSIONAL RESISTIVE GRID INPUT
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FIGURE 8A. AERIAL IMAGE INPUT TO NONLINEAR TWO-DIMENSIONAL RESISTIVE GRID
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FIGURE 8B. RESULTANT CONDUCTANCE MAP FOR AERIAL IMAGE FOR MODERATE
NONLINEARLITY SETTING
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DOUBLED SCALES
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